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Abstract

The aim of this article is to try to explain why isotactic polypropylene (PP) is stiffer than high density polyethylene (HDPE) despite the fact

that this latter is more crystalline and that its crystallites are stiffer than PP ones. Two micromechanical models were chosen for their ability

to represent semi-crystalline polymers. The first one is a differential scheme in which ellipsoidal crystallites are randomly dispersed in an

amorphous matrix. The second one is a self-consistent scheme where the material is considered as an aggregate of randomly oriented two

layered-phase composite inclusions (crystalline–amorphous). Experiment-model comparisons are clearly in favor of the first model. This

latter demonstrates the key importance of the crystalline lamellae aspect ratio on the elastic properties of semi-crystalline polymers.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Nowadays, thermoplastic materials are increasingly used

in industrial parts. It is especially true for semi-crystalline

materials, which are widely used as structural materials.

During the part forming, the stretching or the shearing of the

polymer melt under strong cooling conditions lead to a flow-

induced crystallization, which generates specific crystalline

morphologies such as deformed spherulites, shish–kebab or

more complex crystalline macrostructure like in polypro-

pylene for example [1]. A high anisotropy of molecular

orientation in the crystalline phase is resulting [2,3], even

for solidifying shear flows [4–6]. Moreover crystallinity

variations along the part and in the part depth can be

observed [7]. The crystalline orientation is responsible for

possible anisotropic behavior, while variations of the

amount of crystallinity induce strong variations of the

mechanical properties [8].

For structural polymer applications, there is an industrial

need for the prediction of these mechanical properties,

especially for the small-deformation behavior, to determine

for example the strength of blown bottles [9] or the

shrinkage and the warpage of injected parts [10]. Now,

process simulations including a flow-induced crystallization

law coupled to a viscoelastic behavior based on molecular

models [11], allow to predict the final crystallinity and the

final molecular orientation in the crystalline phase [12,13].

But, from the predicted crystalline morphology of the

polymer, little was done to predict the mechanical proper-

ties. Although micromechanical modeling is efficiently used

to determine the thermomechanical properties of filled

polymers [14], only a few researchers applied these micro–

macro models to non-filled semi-crystalline polymers.

Halpin and Kardos [15] proposed to use Halpin–Tsai

model [16] in order to determine the elastic moduli of semi-

crystalline polymers. The model requires the assumption

that lamellae be regarded as fibers. Phillips and Patel [17]

applied this model to PE. An adjustable parameter in this

model was linked to crystallite shape ratio. However, this

model, which is generally used to calculate the moduli of

short-fiber composite, is known to fit only the experimental

data at low volume fraction of filler. This is not the case of

semi-crystalline materials, for which the crystallinity can

often reach 60–70%.

Later, several researchers worked on the prediction of the

large deformation behavior to predict the texture evolution

induced by a plastic deformation [18,19]. Lee et al. [18]

developed a specific micromechanical model in which the

crystalline lamellae were assumed to be rigid-visco-plastic

and the amorphous phase visco-plastic. Nikolov and Doghri
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[20] adapted the previous model in a Sachs-inclusion model

for the small-deformation behavior by assuming a visco-

elastic behavior for the amorphous phase. This modeling,

which leads to a lower bound for the micromechanics

modeling, should underestimate the experimental moduli.

More recently, van Dommenlen et al. [21] have also adapted

the Lee et al.’s model [18] by assuming the behavior of the

amorphous phase as isotropic elastic with plastic flow being

a rate-dependent process with strain hardening resulting

from molecular orientation and the one of the crystalline

phase as anisotropic elastic with plastic flow occurring via

crystallographic slip. The behavior of polymer is simulated

until large deformation scale. The elasto-plastic-stress–

strain behavior of HDPE during monotonic and cyclic

loadings and the evolution of morphology were studied.

Their results agree globally well with literature values, but

the predicted initial moduli variation of PE versus the

crystalline fraction does not fit the experimental values. No

shape factors, which could describe the crystallite geometry,

are introduced in the recent works.

The aim of this paper is to show how micromechanical

modeling can predict the elastic behavior of polypropylene

and polyethylene. Of course, even for small deformations, it

is well known that these polymers have a visco-elastic

behavior, even a visco-elasto-plastic behavior, but let us first

evaluate the relevance of micromechanical modeling on the

prediction of elastic properties of two different isotropic

polymers at ambient temperature.

2. Micromechanical modeling

At a microscopic scale, semi-crystalline polymers are

heterogeneous materials consisting of co-existing amor-

phous and crystalline phases. The crystalline phase consists

mainly of crystal lamellae. In a relaxed polymer melt, the

principal crystal lamellae grow radially from nucleation

sites into a spherulitic texture, therefore the polymer chains

are oriented perpendicular to spherulite radii. The lamellae

are not always isolated entities, but joined together by

branch-points, especially in polypropylene [1]. Moreover,

the stress in the polymer is transmitted between the two

phases through tie-molecules and that content of tie-

molecules depends on crystallization conditions. Never-

theless, crystallite lamellae will be considered in our work

as embedded into the amorphous phase, assuming that

crystalline branch-points are weak links and that tie-

molecules do not play a role in the small deformation scale.

Here, heterogeneities are considered at the sub-spheru-

litic scale and the two constitutive phases are the crystal

lamellae and the amorphous phase. To investigate on the

ability of micromechanics modeling to predict the homo-

geneous elastic behavior of semi-crystalline polymers, two

materials are considered, polypropylene and polyethylene.

Micromechanical modeling requires parameters such as

behavior type, volume fraction and morphology of each

constitutive phase. All these parameters are now discussed.

2.1. Material description

Two commercial homopolymers were supplied by

Solvay: polypropylene PP ELTEX HV 252 and high density

polyethylene (HDPE) PE HD6070 EA. The average

molecular weight and the polydispersity index were

determined by Solvay by means of gel permeation

chromatography. The Young’s modulus and the Poisson’s

ratio were measured at ambient temperature on 4 mm thick

injection-molded samples by tensile tests on an Instron 4502

machine equipped with a mechanical Instron bi-axial

extensometer. The test conditions were set according to

the standard ISO 527. The mean crystallinity was

determined from density measurement considering a single

crystalline phase in each polymer: a phase for PP and the

orthorhombic phase for HDPE. Physical and mechanical

properties for both materials are given in Table 1. The

Young’s modulus of other quoted PE versus density or

crystallinity is extracted from BP-Solvay Polyethylene

database.

2.1.1. Characterization of the amorphous phase

For both polymers under study, the glass transition

temperature of the amorphous phase is lower than ambient

temperature; therefore the amorphous phase is in the

rubbery state at ambient temperature. Chain entanglements

are the cause of rubber-elastic properties in the liquid state

and the kinetic theory of rubber elasticity, which was

particularly developed by Flory [22], leads to the following

equation for the amorphous phase of thermoplastic poly-

mers above the glass transition temperature [23]:

G0
N ¼

rRT

Me

ð1Þ

where G0
N is the shear modulus at plateau, r the amorphous

phase density, R the ideal gas constant, T the temperature

and Me the molar mass between entanglements. The

modulus at plateau G0
N; which can be determined by

Table 1

Some physical and mechanical properties of PP ELTEX HV 252 and PE HD6070 EA

Polymer MFI (g/10 min) (2.16 kg 230 8C) Mn (kg/mol) Mw (kg/mol) Young’s modulus (MPa) Poisson’s ratio Mean volume crystallinity (%)

HDPE 7 12 70 1200 0.46 70

PP 11 25 180 1400 0.42 57
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rheological measurements, is independent of chain length

and not much sensitive to temperature. The molar mass

between entanglements Me is a material property, which can

be considered temperature independent. Me values (Table 2)

are deduced from rheological measurements at high

temperature [23–25]. Nevertheless, as both polymers

cannot be obtained in a fully amorphous state at ambient

temperature, G0
N values have to be extrapolated through Eq.

(1). Me is chosen equal to 7 kg/mol for PP and to 1.4 kg/mol

for PE (Table 2), the amorphous phase density at ambient

temperature is taken equal to 850 kg/m3 for PP and 855 kg/

m3 for PE [26], then G0
N at ambient temperature is equal to

1.5 MPa for PE and 0.3 MPa for PP (Eq. (1)). Hence the

Young’s modulus of the amorphous phase at ambient

temperature, which is equal to three times the shear

modulus, was found equal to Eam
PE ¼ 4:5 MPa for PE and

Eam
PP ¼ 0:9 MPa for PP.

Since the amorphous phase of the studied polymers is in

the rubbery state, its Poisson’s ratio is very close to 0.5, but

slightly lower. To get coherent elastic properties, the

Poisson’s ratio n is calculated using the classical relation

[26]:

B ¼
E

3ð1 2 2nÞ
ð2Þ

where the bulk modulus B is extrapolated at ambient

temperature from PVT data [27] thanks to its definition

relation:

1

B
¼

1

V

›V

›p
ð3Þ

V being the specific volume. The determined values of bulk

modulus (Bam
PP ¼ 2200 MPa and Bam

PE ¼ 3000 MPa) are

close to the literature ones [26].

2.1.2. Crystalline phase characterization

The crystalline phase consists of polymer lamellae,

which show a highly anisotropic behavior with a very high

modulus along the chain axis. Elastic constants have been

theoretically calculated for several materials and are

reviewed by Ward [2]. For PE, the theoretical values of

the stiffness tensor seem to largely overestimate the

measured ones [28]. The polymer crystal stiffness is related

to the conformation of the molecular chain [29]. The

polyethylene chain has a planar-zigzag conformation, which

justifies a theoretical modulus as high as 300 MPa along the

chain direction. However, dynamical calculations have

demonstrated the high dependence of the modulus on the

chain contraction and when the chain contracts slightly from

the planar-zigzag conformation, the modulus along the

chain axis drops drastically. Tashiro et al. [29] suggest that,

as the a-form nylon-6, the PE polymer chain experiences a

thermal motion at room temperature and contracts from the

planar-zigzag conformation, which induces a drop in

modulus. Experimental measurements on ultra drawn

HDPE have strengthened the idea that the value of

theoretical modulus in the chain axis cannot be reached

[28]. Therefore the moderate elastic stiffness tensor at

ambient temperature could be, as proposed by Choy and

Leung [28]:

Cc
PE ¼

7:0 3:8 4:7 0 0 0

3:8 7:0 3:8 0 0 0

4:7 3:8 81 0 0 0

0 0 0 1:6 0 0

0 0 0 0 1:6 0

0 0 0 0 0 1:6

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

GPa ð4Þ

where direction 3 refers to the chain axis, direction 1 to the

lamella growth and direction 2 is represented in a manner as

ðe1; e2; e3Þ defines a direct frame. This elasticity tensor

seems especially appropriate for micromechanical calcu-

lations. van Dommelen et al. [21] have recently used this

same tensor for their micromechanical modeling of elasto-

viscoplastic behavior of polyethylene.

For polypropylene, the molecular chain has a helical

conformation angle which is less dependent on the

temperature [29]; hence the theoretical stiffness tensor as

calculated by Tashiro et al. [30] would be:

Cc
PP ¼

£

7:78 3:91 3:72 0 0:9 0

3:91 11:55 3:99 0 20:36 0

3:72 3:99 42:44 0 20:57 0

0 0 0 4:02 0 20:12

0:9 20:36 20:57 0 3:1 0

0 0 0 20:12 0 2:99

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

GPa

ð5Þ

This theoretical tensor agrees with the X-ray observed value

of 40 GPa along the chain direction [31].

2.1.3. Morphology

At this step, let us note an interesting paradox: in spite of

Table 2

Rheological measurement of moduli at plateau and calculated molar masses

between entanglements for PE and PP

Polymer T (K) r (kg/m3) Measured G0
N (Mpa) Me (kg/mol)

PE [23] 463 760 2.06 1.42

PE [24] 463 769 2.1 1.39

iPP [25] 463 765 0.42 7.02

aPP [25] 463 766 0.43 6.86
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a much higher volume fraction of crystalline phase, a much

higher crystalline modulus along the chain direction and an

elastic modulus of the amorphous phase of the same order,

the Young’s modulus of HDPE is lower than the PP one,

both polymers being in a macroscopically isotropic state.

This paradox has to be explained by consideration of a

morphological parameter.

The lamella thickness can be measured by small angle X-

ray scattering (SAXS). The comparison of the crystalline

layer thicknesses of several polymers [32] has shown that

PE lamellae are thicker than PP ones. In this work, the PP

lamellae thickness is about 10 nm while the lamella

thickness for HDPE is closer to 20 nm. Other authors [33]

find the PE lamellae from 7 to 20 nm. Due to experimental

difficulties, measurements of lamella length are scarce.

Authors have found only an estimate of the maximum

length of PE lamellae in the range of 0.5–1 mm [33].

Believing that spherulite size is related to the lamellae

length [34], spherulite dimension has been measured in the

core of the injection molded plates of PP and PE. Spherulite

pictures of 15 mm-thick microtomed slices were taken under

a polarized light on an optical microscope Olympus BH-2

(Fig. 1). The PP spherulite diameter is about 40 mm and four

times the PE spherulite diameter. Hence PP lamellae are

assumed to be four times longer than the PE lamellae. As it

will be discussed later, more than exact values of lamellae

thickness or length, one of the key morphological

parameters for micromechanical modeling is the ratio of

length over thickness. Considering all the previous remarks,

the ratio of length over thickness is higher for PP than for

PE.

All materials parameters being determined, some micro-

mechanical models aimed to estimate the elastic behavior of

the homogeneous medium equivalent to a given hetero-

geneous material, are now presented.

2.2. Basic constitutive relations

Considering a heterogeneous microstructure with known

micro-constituents properties, micromechanical modeling is

aiming at establishing the behavior law of the equivalent

homogeneous medium. When elastic behavior is considered

only, the constitutive equations for the equivalent homo-

geneous medium may be written in terms of:

S ¼ C : E ð6Þ

where S and E denote the macro stress and macro strain

tensor, respectively, C is the stiffness tensor of the semi-

crystalline polymer.

Introducing the representative volume element V of the

local properties, which contains a large number of micro-

elements but has small dimensions in regard to the structure

dimensions, S and E may be given in terms of the volume

average stress and strain tensors:

S ¼, s .V¼
1

V

ð
V
sðxÞdV

E ¼, e .V¼
1

V

ð
V
eðxÞdV

ð7Þ

s and e being the microscopic stress and microscopic strain

tensors, respectively.

Due to Hill [35], strains (resp. stresses) in the hetero-

geneities are related to the macroscopic strains (resp.

stresses) by the concentration-strain (resp. stress) tensor:

ecðxÞ ¼ A : E scðxÞ ¼ B : S ð8Þ

Hence a relation between S and E might be given in terms

of:

S ¼
1

V

ð
Vc

Cc : ecðxÞdV þ
ð

Vam
Cam : eamðxÞdV

� 	
ð9Þ

where am stands for the amorphous phase and c for the

crystalline phase. Finally C is simply defined by the

relation:

C ¼ Cam þ f cðCc 2 CamÞ : A ð10Þ

where f c is the volume fraction of the crystalline phase. The

Fig. 1. Spherulitic morphology in the core of injected samples: PE on the left and PP on the right.
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assessment of the concentration-strain tensor A depends on

the micromechanical model.

The isotropic spherulitic structure is very complex and

taking into account this structure precisely seems incompa-

tible with classical micromechanics model. Therefore two

idealized representations of the materials have been chosen.

On one hand the crystal lamellae are dispersed randomly in

an amorphous matrix, on the other hand the material is made

of an aggregate of composite inclusions, each inclusion

consisting on a crystal lamella and an amorphous layer with

a perfect interface. Both representations are now detailed.

2.3. Randomly distributed crystallites embedded in an

amorphous matrix

In this representation, the crystalline phase is considered

as a reinforcing phase embedded in an amorphous matrix.

Crystal lamellae are approximated by ellipsoidal inclusions

where direction 1 is the lamellae growth direction and

direction 3 goes along the chain axis (Fig. 2).

To approximate the macroscopic tensor C representative

of the elastic behavior of the equivalent homogeneous

medium, some well known micromechanics models, which

have been largely used for composite materials, are

introduced.

The simplest models are the Voigt and Reuss bounds

[36], which correspond to a homogeneous deformation and

homogeneous stress in the material, respectively. Because

of the high contrast between amorphous and crystalline

phase moduli, both assumptions will give a result too far

from the experiments. In another model due to Mori and

Tanaka [37], the inclusions undergo the influence of other

inclusions as equal as the average field in the matrix. This

theory applies for volume fractions up to 30% only.

Crystalline phase volume fractions encountered in our

materials is out of the model validity range. In the self-

consistent model, the material surrounding the inclusion is

the equivalent homogeneous medium. This model is better

suited for polycrystals or inclusion aggregates than the

matrix/inclusion morphology [38].

Finally, the differential scheme is well designed when the

volume fraction of the reinforcing phase is high [36]. The

reinforcing phase is introduced by infinitesimally small

increments using the dilute-distribution assumption. At the

first increment the matrix surrounding the inclusion is the

amorphous phase, at the following increments, the matrix

surrounding the inclusion is characterized by a uniform

elasticity, which has been calculated at the previous

increment.

At each step n þ 1; the equivalent homogeneous medium

stiffness tensor, Cnþ1, is evaluated from the following

equations:

An ¼ I þ Sesh
n C21

n ðCc 2 CnÞ ð11Þ

Cnþ1 ¼ Cn þ df ðCc 2 CnÞ : An

where I is fourth-order unity tensor, df is the increment of

crystal added at step n þ 1 and Sesh
n is the Eshelby tensor

[39] which depends on the inclusion ellipsoidal shape and

on the elastic behavior of the surrounding material Cn: This

model will be used to estimate the stiffness tensor C for PP

and various PE (low to HDPE). It will be also compared

with another approach, which is very different from the

matrix/inclusion model and developed specifically for semi-

crystalline polymers by Lee et al. [18]. In this approach the

material consists in an aggregate of composite layers as it is

described in the following section.

2.4. Inclusion aggregate

The isotropic semi-crystalline polymer is represented by

an aggregate of layered two-phase composite inclusions

which are randomly oriented (Fig. 3). The angle between the

chain axis direction c and the lamella normal n depends on

the semi-crystalline polymer considered. As an example, the

PE lamellae exhibit a tilt angle varying from 198 to 408 [40],

whereas PP shows no tilt.

In this representation, both lamellae length and width are

assumed to be very large in regards to the thickness, hence

stresses and deformations within each phase may be

considered as homogeneous. The composite inclusion

stiffness tensor CIðsI ¼ CIeIÞ is obtained by writing the

interface compatibility and equilibrium [18]:

ec
ab ¼ ea

ab ¼ e I
ab ða;bÞ [ {1; 2} £ {1; 2} ð12Þ

sc
i3 ¼ sa

i3 ¼ sI
i3; i [ {1; 2; 3} ð13Þ

Fig. 2. Schematic illustration of crystal lamellae randomly distributed in the

amorphous matrix. Direction 3 goes along the chain direction and direction

1 is the lamella growth direction. Fig. 3. Inclusion representation from Lee et al. [18].
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and the mixture rule:

XI ¼ faXa þ fcXc for X ¼ s or X ¼ e ð14Þ

Adopting the Voigt’s notation, CI is given in terms of the

relation:

sI
K ¼

X
J¼1;2;6

faðC
a
KJ 2 Cc

KJÞe
I
J þ

X
J¼3;4;5

faðC
a
KJ 2 Cc

KJÞe
a
J

þ
X6

J¼1

Cc
KJe

I
J ð15Þ

where ea
J is given in terms of Ca;Cc; fa and eI when using

Eq. (13).

Once the inclusion behavior is known, a micromechani-

cal model is applied to work out the isotropic behavior of the

aggregate of randomly oriented inclusions. At this step,

Nicolov et al. [41] have chosen a Sachs-type model while

van Dommelen et al. [21] have used a hybrid model. Both

models do not take into account any morphological

parameters except for the tilt of the chain into the lamella.

Knowing that the elastic behavior of respective phases and

the crystallinity fraction cannot explain the lower modulus

of HDPE compared to the PP modulus, can these models be

relevant for both, PP and HDPE, polymers? Here, to account

for morphological parameters, the self-consistent approach

has been used since this model is appropriate for aggregate

schematization. The homogeneous equivalent medium

stiffness tensor C is then defined by the implicit relation:

C ¼ C þ f cðCc 2 CÞ : AðCÞ ð16Þ

AðCÞ ¼ I þ SeshC21ðCc 2 CÞ

and is evaluated with an iterative scheme, where the initial

tensor C0 consists on the Voigt approximation stiffness

tensor. The convergence conditions are written in terms of:X
K;L

lCnþ1
KL 2 Cn

KLl # d ð17Þ

and

X
K;L

1

m

Xm
i¼1

Ai
KL

 !
2 IKL












 # d ð18Þ

where m is the number of inclusions considered, Ai is the

tensor of localization for inclusion i and I is the forth-order

tensor.

This self-consistent scheme inclusion aggregate model is

investigated in the case of PP and PE. In the next section, the

inclusion aggregate model is compared to the differential

scheme matrix/inclusion model for both materials.

3. Results and discussion

In this section, macroscopic elastic constants are

calculated using the self-consistent composite inclusion

aggregate model and the differential scheme matrix/inclu-

sion model. The predicted results are compared to

experimental data for PP and PE.

The number of randomly oriented inclusions within the

matrix or within the aggregate should be sufficiently large in

order to ensure isotropy; meanwhile, time of calculations

should be reduced as much as possible. Here 200

orientations have been a good compromise to reach isotropy

within an error of 5% in a limited time. For the differential

scheme, the final homogeneous modulus depends on the

prescribed increment of crystal volume fraction. In order to

get a fair value of the homogeneous modulus, the increment

must be taken sufficiently small; here a 2% increment is

prescribed.

Considering for the PE lamellae, an average length from

0.5 to 1 mm as proposed by Michler and Godehardt [33], an

average thickness of 20 nm [32] and a reasonably estimated

width about 10 times the thickness, the calculated modulus

overestimates largely the material modulus. As it has been

discussed in Section 2, lamella shape ratios have not been

Fig. 4. Prediction of macroscopic PE Young’s modulus versus volume crystallinity for ellipsoidal shape ratios a1=a3 ¼ 18 and a2=a3 ¼ 5:

F. Bédoui et al. / Polymer 45 (2004) 2433–24422438



defined precisely by experiments. Therefore values of the

inclusion ellipsoidal shape ratios have been estimated for

each material in order to reach an acceptable value for the

Young’s modulus. Denoting a1; a2 and a3 the length, width

and thickness of the lamella, two aspect ratios only are

required to define the inclusion ellipsoidal shape. The shape

parameters may be a1=a3 and a2=a3 for example. Fig. 4

presents the predicted macroscopic elastic modulus for PE

as a function of the volume crystallinity. For the matrix/

inclusion model, shape ratios equal to a1=a3 ¼ 18 and

a2=a3 ¼ 5 while for the composite inclusion aggregate the

shape ratios are equal to unity. In the case of the self-

consistent composite inclusion aggregate, the condition of

convergence in Eq. (18) cannot be reached for other shape

ratios than unity. Therefore the self-consistent model

defined in Eq. (16) is invalidated when the inclusion

morphology is different from sphere [42].

The differential scheme matrix/inclusion model shows

results in very good agreement with the experimental data.

All calculations for both models were performed with a tilt

angle of 408. The composite inclusion aggregate model

exhibits a curve shape that differs from experimental results

and consequently experimental data cannot be fitted over

the crystallinity range.

Results presented by van Dommelen et al. [21] are also

plotted in Fig. 4. These results have been obtained with a

composite inclusion aggregate hybrid model, which exhibits

no morphology parameters except for the measured tilt of

the chain in the lamella. Their results are far from the

experimental data, especially for low crystallinities. Those

authors attribute the deviation at low crystallinities to a

change in the aspect ratio of lamellae that cannot be taken

into account in their model. Introducing aspect ratios a1=a3

and a2=a3 equal to unity (a spherical inclusion, which

minimizes the predicted moduli), the self consistent scheme

composite inclusion aggregate model gives a predicted

modulus over 670 MPa for a volume crystallinity of 45%,

which still overestimates largely the experimental data:

around 250 MPa.

We have also performed calculations for PP. Fig. 5

exhibits the estimated Young’s modulus for inclusions

shape ratios, a1=a3 ¼ 50 and a2=a3 ¼ 5 for the matrix/

inclusion differential scheme model and the experimental

data versus the crystal volume fraction. A good fit is

Fig. 5. Prediction of macroscopic PP Young’s modulus versus volume crystallinity for ellipsoidal shape ratios a1=a3 ¼ 50 and a2=a3 ¼ 5:

Fig. 6. Estimates of PE and PP Poisson’s ratio versus volume crystallinity.

F. Bédoui et al. / Polymer 45 (2004) 2433–2442 2439



obtained with the differential scheme matrix/inclusion

model. A good estimate at a fixed crystallinity of 57% is

obtained with the composite inclusion aggregate model, but

the shape of the curve is far from the expected one. In

regards to the experimental data presented in the case of PE,

one expects the same kind of curve shape for PP.

Poisson’s ratio estimates have also been plotted versus

crystallinity for both materials and both models in Fig. 6. As

expected, the matrix/inclusion differential scheme model

provides a good prediction of the Poisson’s ratio, whereas

the inclusion aggregate model underestimates this material

parameter and overestimates the modulus.

For both materials, we have introduced values of

inclusion aspect ratios that cannot be easily validated by

physical measurements, but which have been physically

motivated. First we have noted that the lamella thickness,

which corresponds to the chain direction, must be small in

regard with its length and width. Also the lamellae width

must be small compared to the length. These remarks drive

us to an oblate ellipsoidal shape for the inclusions.

Secondly, the relative sizes of the spherulites on one part

and of the lamella thickness on the other part for both PP

and PE (see Section 2), suggest that aspect ratios are larger

for PP than for PE. Hence, an explanation for the observed

low macroscopic modulus of PE compared to PP one,

despite a higher crystallinity and a higher modulus for each

phase is given by the micromechanics model. The HDPE

lower modulus compared to the PP modulus is due to

smaller aspect ratios of the lamellae.

The influence of the aspect ratio parameters for the

matrix/inclusion model has been quantified by considering

the evolution of the homogeneous modulus at a fixed

crystallinity with respect to the aspect ratio parameters.

First, the parameter a2=a3 has been fixed equal to 5 while

a1=a3 (length over thickness) goes from 18 to 140. Fig. 7

shows the homogeneous modulus variation versus a1=a3 for

PP with a crystalline volume fraction equal to fc ¼ 57% and

for HDPE with fc ¼ 70%.

Other calculations with fixed length over thickness ratio,

a2=a3 ¼ 18 for HDPE and a1=a3 ¼ 50 for PP, have been

computed. The inclusion width may theoretically vary from

the length to the thickness. Figs. 7 and 8 demonstrate the

Fig. 7. Influence of the shape parameter length over thickness a1=a3 at a fixed width over thickness a2=a3 ¼ 5 for the matrix/inclusion differential scheme

model.

Fig. 8. Influence of the shape parameter width over length a2=a1; at a fixed length over thickness a1=a3 ¼ 20 for the PE and a1=a3 ¼ 50 for the PP, for the

matrix/inclusion differential scheme model.
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high influence of the inclusion aspect ratio on the final

result. The modulus is shown to be more affected by the

length over thickness parameter change, which may be

explained by the large range of this parameter.

Finally, the influence of the tilt angle, which is defined as

the angle between the chain axis direction c and the lamella

normal n in the case of the composite inclusion aggregate

model and between the chain axis direction c and the

ellipsoidal thickness direction e3 for the matrix/inclusion

model, has been evaluated. When the angle goes from 08 to

408, the modulus estimate varies within 5% for the

matrix/inclusion model; hence the tilt angle has little

influence on the final result. For the composite inclusion

aggregate model, the modulus decreases when the tilt angle

increases, the influence of the tilt angle is much stronger and

goes up to 20%. These results are presented in Fig. 9 for the

case of PE with 40% and 70% of crystallinity.

4. Conclusion

A micromechanical approach has been used for the

prediction of isotropic elastic behavior of semi-crystalline

polymers. Among several micromechanics models, two

models have been especially investigated for their theoreti-

cal ability to represent semi-crystalline polymers: a

differential scheme matrix/inclusion model and a self-

consistent scheme composite inclusion aggregate. The

material microstructure is represented by crystalline

inclusions embedded into an amorphous matrix for the

first model and by an aggregate of two-phase layered

composite inclusions for the second one. The review of the

elastic properties of each phase and of the respective

crystalline volume fraction for two well known polymers

(PP and PE), has proven the strong influence of some

morphological parameters on the homogeneous modulus.

The present work has demonstrated the difficulties for the

composite inclusion aggregate model to give satisfactory

results concerning the elastic behavior of semi-crystalline

polymers. This model overestimates largely the material

modulus and underestimates logically the Poisson’s ratio.

Moreover it has no ability to capture a valuable physical

morphological parameter.

On the contrary, the differential scheme matrix/inclusion

model gave good estimates of the modulus and the Poisson’s

ratio for both isotropic materials. In this model, the

inclusion aspect ratios are key morphological parameters,

which explain a lower modulus for HDPE than for PP

despite a higher rigidity for both phases and a higher

crystallinity for HDPE. The model predicts an inclusion

aspect ratio, length over thickness, larger for PP than for PE.

This morphological difference is relevant with experimental

measurements of a mean spherulite radius about four times

larger for PP than for PE injection molded samples and of a

lamella thickness around twice smaller for PP than for PE.

Finally, this work underlines the interest on developing

measurements not only on the lamella thickness but also on

the width and length of lamellae. The lamella thickness

only, cannot be relevant for prediction of the material elastic

constants.
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